866. Molecular Polarisation in Ternary Systems comprising Benzene, Pyridine, and an Alcohol.

By D. Cleverdon, G. B. Collins, and J. W. Smith.

Abstract

The apparent molecular polarisations of n - and tert.-butyl alcohol and of diphenylmethanol at zero concentration in various benzene-pyridine mixtures, and of pyridine at zero concentration in various mixtures of benzene with the alcohols, have been determined. By assuming that the active masses of the alcohols, pyridine, and association complexes can be represented satisfactorily by their concentrations in mole/c.c., the approximate equilibrium constants for the association of pyridine with the monomeric alcohol molecules, and the effective molecular polarisations of the association complexes, have been calculated. The results are discussed in relation to the probable electron distibutions in the alcohol molecules.

The fact that the presence of pyridine modifies considerably the courses of the reactions of certain alcohols with, e.g., acetyl chloride, suggests that pyridine may associate with these alcohols. In 1947 it was pointed out ${ }^{1}$ that any such association should cause the dielectric polarisation of a solution containing both an alcohol and pyridine in an inert solvent to be greater than the value calculated from the molecular polarisations of the components. An effect of the type predicted was observed for a number of alcohols in benzene solution, and the augmentation of the polarisation above the value calculated from the amounts of alcohol and pyridine present was shown to increase progressively with the concentrations of both the alcohol and pyridine. ${ }^{2}$ On the grounds of the chemical behaviour of their derivatives, a series of alkyl and substituted alkyl groups was arranged in the order of their electron-releasing properties, and it was thought possible that the increases in polarisation observed for the alcohols derived from these groups, when studied under comparable conditions, might follow a similar order. ${ }^{1}$ This aspect of the subject has had to be deferred, however, until the effect has been studied in more detail for simple alcohols so as to elucidate the quantitative aspects of the increment of the polarisation. With this object in view the dielectric polarisations of mixtures of benzene and pyridine with n - and tert.-butyl alcohol and with diphenylmethanol have now been studied in detail.

To investigate systems comprising two solutes A and B, which associate with one another but not with the solvent S, it is desirable to determine the limiting values of the molecular polarisation of A at zero concentration in various mixtures of B and S, and also of the molecular polarisation of B at zero concentration in mixtures of A and S. The study of the systems from the two points of view, however, does not necessitate complete duplication of the experimental work, as once data have been obtained for solutions of A in a number of mixtures of B and S these can be used to provide corresponding data for solutions of B in mixtures of A and S. If the weight fractions of the three components are w_{A}, w_{B}, and w_{S}, then $w_{A}+w_{B}+w_{S}=1$. If a mixture is regarded as a solution of A in a solvent $B+S$, then $w_{B}{ }^{\prime}$, the weight fraction of B in the solvent mixture, is $w_{B} /\left(w_{B}+w_{S}\right)$, and therefore $w_{B}=w_{B}{ }^{\prime}\left(1-w_{A}\right)$. Alternatively, if the system is regarded as a solution of B in a solvent $A+S$, it follows that $w_{A}=w_{A}{ }^{\prime}\left(1-w_{B}\right)$, where $w_{A}{ }^{\prime}$ is the weight fraction of A in the solvent. Combining these expressions we obtain :

$$
w_{A}=w_{A}^{\prime} \frac{1-w_{B}^{\prime}}{1-w_{A} w_{B}^{\prime}} \quad \text { and } \quad w_{B}=w_{B}^{\prime} \frac{1-w_{A}^{\prime}}{1-w_{A}^{\prime} w_{B}^{\prime}}
$$

If solutions of A in constant mixtures of B and S have been studied, the values of $w_{B}{ }^{\prime}$ have been fixed when making the solvent mixtures. If a set of convenient values be chosen for $w_{A}{ }^{\prime}$ the corresponding values of w_{A} may be calculated for each mixture, and the specific polarisations of the solutions of those concentrations determined by interpolation of the

[^0]existing data. It remains only to calculate the set of values of w_{B} to complete the polarisation data equivalent to those for a series of solutions of B in mixtures of A and S in the chosen proportions.

The general case of two substances A and B, which form an unstable compound $A B$ but do not react with the solvent S, has been discussed previously. ${ }^{3}$ If the active masses of these substances can be represented by their concentrations in mole/c.c., the apparent limiting value of the molecular polarisation of A at zero concentration in a constant mixture of B and $S,\left(P_{d_{\infty}}\right)_{B S}$, is given by :

$$
\frac{\Delta P}{\left(P_{A_{\infty}}\right)_{B S}-\left(P_{A_{\infty}}\right)_{s}}=\frac{M_{B}}{K w_{B}^{\prime} d_{B S}}+1
$$

where M_{B} is the molecular weight of $B, d_{B S}$ the density of the solvent mixture, K the association constant of the complex $A B$, and $\Delta P=\left(P_{\Delta B_{\infty}}\right)_{s}-\left(P_{\Delta_{\infty}}\right)_{s}-\left(P_{B_{\infty}}\right)_{s}$, the last three functions being the limiting values of the molecular polarisations of $A B, A$, and B, respectively, at zero concentration in the solvent S. It follows, therefore, that a plot of $1 /\left\{\left(P_{A_{\infty}}\right)_{B S}-\left(P_{\Delta_{\infty}}\right){ }_{s}\right\}$ against $M_{B} / w_{B} d_{B S}$ should be linear, with a slope $1 / K \Delta P$ and an intercept on the axis for the former of $1 / \Delta P$. Further, this should superpose upon the corresponding plot of $1 /\left\{\left(P_{B_{\infty}}\right)_{\Delta S}-\left(P_{B_{\infty}}\right)_{s\}}\right.$ against $M_{A} / w_{\Delta}{ }^{\prime} d_{\Delta S}$ derived from data for solutions of B in solvents comprising mixtures of A and S.

The assumptions on which this method is based should be roughly true for the case of an alcohol in a series of constant mixtures of pyridine and benzene. When the alcohol approaches zero concentration in these A-in- $B S$ systems the conditions become such that interaction occurs only between pyridine and monomeric alcohol molecules. When the $\left(P_{B_{\infty}}\right)_{A S}$ values for pyridine in constant mixtures of an alcohol and benzene (" B-in- $A S$ " systems) are studied, however, the alcohol is present both as single molecules and as associated molecules of various degrees of complexity. As the extent of this association differs from one solvent mixture to another the results obtained in different series of measurements relate to the interaction of pyridine molecules with alcohols in different states of complexity. Hence the plots for the B-in- $A S$ systems cannot be expected to superpose upon those for the A-in- $B S$ systems.

The polarisation results obtained for the systems studied are summarised in Table 1, where α and β are the limiting values of $\mathrm{d} \varepsilon / \mathrm{d} w$ and $\mathrm{d} v / \mathrm{d} w$, respectively, at zero concentration. The values of $\left(P_{A_{\infty}}\right)_{B S}$ and $\left(P_{B_{\infty}}\right)_{\Delta S}$ shown are the mean figures from at least three methods of extrapolation, and the maximum divergences from the mean values are indicated. The results for the series of solutions of n-butyl alcohol in a pyridine-benzene mixture fall well in line with the remaining data for this system, derived by the indirect procedure.

In each system the apparent molecular polarisation values at zero concentration increase progressively with increasing concentration of pyridine or alcohol in the solvent mixture. On the other hand the association does not seem to affect appreciably the refractivities of the mixtures, as the apparent values of the molecular refractions of the solutes show no systematic change with the composition of the solvent. The effective specific volumes of the solutes, as given by $v_{B S}+\beta$ or $v_{\Delta S}+\beta$, indicate that in each system the association is accompanied by a decrease in volume. A decrease in effective specific volume also accompanies the association of alcohols alone in benzene solution. ${ }^{4}$

If P_{E+A} is assumed to be represented by [R_{D}], the results for solutions of pyridine in benzene lead to a dipole moment of $2 \cdot 20 \mathrm{D}$, in accordance with previous values ${ }^{5-7}$ obtained from measurements on benzene solutions ($2 \cdot 23, \sim 2 \cdot 2,2 \cdot 20$) and close to the value $(2 \cdot 15 \mathrm{D})$ obtained from microwave-absorption measurements on the vapour. ${ }^{8}$

[^1]Table 1．Summary of polarisation data．

$100 w_{B}$	$v_{B S}$	α	β	$\begin{gathered} \left(P_{A_{\infty}}\right)_{B S}(\text { c.c. }) \end{gathered}$	$\underset{\text { (c.c. })}{\left(P_{A_{\infty}}\right)_{B S}-\left(P_{A \infty}\right)_{S}}$	$\begin{gathered} {\left[R_{\mathrm{D}}\right]_{\boldsymbol{A}}} \\ \text { (c.c.) } \end{gathered}$
$\mathrm{n} \cdot$ Butyl alcohol in benzene－pyridine．						
0.000	$1 \cdot 14458$	$3 \cdot 77$	0．133	$81.0 \pm 0 \cdot 3$	－	22.0
1.000	1－14328	－	－	94．3 $\pm 0 \cdot 1$	13.3	－
2.000	1－14192		－	103．9 ${ }^{\text {土 }} 0.2$	22.9	
2.833	$1 \cdot 14083$	$6 \cdot 15$	$0 \cdot 130$	109．5 ${ }^{\text {土 }} 0.3$	28.5	$22 \cdot 1$
3.000	$1 \cdot 14059$	－	－	110.6 ± 0.2	$29 \cdot 6$	－
$4 \cdot 000$	1－13926	－	－	115.2 ± 0.3	34．2	－
$5 \cdot 000$	$1 \cdot 13793$	－	－	118.7 ± 0.2	$37 \cdot 7$	－
6.000	$1 \cdot 13660$	－	－	121．4 $\pm 0 \cdot 1$	$40 \cdot 4$	－
tert．Butyl alcohol in benzene－pyridine						
0.000	$1 \cdot 14458$	$3 \cdot 65$	$0 \cdot 206$	80.5 ± 0.2	－	22.6
1.244	$1 \cdot 14286$	$4 \cdot 18$	$0 \cdot 207$	87.2 ± 0.3	6.7	22.7
$2 \cdot 440$	$1 \cdot 14133$	$4 \cdot 64$	0.206	92．3 ${ }^{\text {土 }} 0 \cdot 4$	11.8	22.6
3.738	$1 \cdot 13957$	$5 \cdot 06$	$0 \cdot 206$	96．4 ${ }^{\text {¢ }} \mathbf{0 . 3}$	$15 \cdot 9$	22.7
6.541	$1 \cdot 13587$	$5 \cdot 69$	$0 \cdot 206$	100．7 ± 0.3	$20 \cdot 2$	22.6
6.871	1－13547	$5 \cdot 86$	$0 \cdot 204$	102．2 ${ }^{\text {土 }} 0.4$	21.7	$22 \cdot 6$
9•166	1－13242	$6 \cdot 20$	0.205	103．1 $\pm 0 \cdot 3$	$22 \cdot 6$	$22 \cdot 6$
Diphenylmethanol in benzene－pyridine．						
0.000	$1 \cdot 14458$	1.780	－0．246	111.0 ± 0.2	－	57.7
$1 \cdot 477$	$1 \cdot 14260$	3－157	－0．249	155．6 ± 0.2	$44 \cdot 6$	57.7
1.907	1－14205	$3 \cdot 422$	－0．249	163．4 ${ }^{\text {a }} 0.2$	$52 \cdot 4$	$57 \cdot 5$
$2 \cdot 763$	1－14089	3．850	－0．249	$175 \cdot 3 \pm 0 \cdot 3$	$64 \cdot 3$	$57 \cdot 5$
$4 \cdot 266$	1－13884	4．364	－0．250	187．9 ${ }^{\text { }} 0 \cdot 1$	76.9	$57 \cdot 6$
$100 w_{4}$	$v_{1 S}$	α	8	$\begin{gathered} \left(P_{B_{\infty}}\right)_{A S} \\ \text { (c.c.) } \end{gathered}$	$\underset{\text { (c.c.) }}{\left(P_{B_{\infty}}\right)_{\Delta S}-\left(P_{B_{\infty}}\right)_{s}}$	$\begin{aligned} & {\left[R_{\mathrm{D}}\right]_{B}{ }_{B}} \\ & \text { (c.c. } \end{aligned}$
Pyridine in benzene－n－butyl alcohol．						
0.000	1－14455	$6.67{ }_{5}$	－0．133	123.2 ± 0.2	－	24•1
0.923	$1 \cdot 14577$	$7 \cdot 79$	－0．140	138.4 ± 0.2	$15 \cdot 2$	$24 \cdot 1$
1.250	$1 \cdot 14616$	$8 \cdot 145$	－0．142	143.2 ± 0.3	$20 \cdot 0$	$24 \cdot 0$
1.866	1－14698	8.90	－0．146	153．0 ± 0.3	29.8	$24 \cdot 0$
2.538	1－14777	$9 \cdot 69$	-0.150	163.7 ± 0.5	$40 \cdot 5$	$24 \cdot 1$
$3 \cdot 564$	1－14895	10.92	-0.154	177．9 ± 0.5	$54 \cdot 7$	$24 \cdot 0$
$4 \cdot 350$	1－14983	11.83	－0．157	188．8 ${ }^{\text {土 }} 0.6$	$65 \cdot 6$	24.0
Pyridine in benzene－tert．－butyl alcohol．						
1.000	$1 \cdot 14659$	－	－	$130 \cdot 2 \pm 0 \cdot 2$	$7 \cdot 0$	一
$2 \cdot 000$	$1 \cdot 14850$	一	一	137．2 ${ }^{\text {土 }} 0.3$	$14 \cdot 0$	－
$3 \cdot 000$	1－15034	－	－	144．4 $\mathbf{0 . 4}$	21.2	一
$4 \cdot 000$	1－15214	一	－	151．6	$28 \cdot 4$	－
$5 \cdot 000$	1－15388	\cdots	－	159．1 ${ }^{\text {土 }}$ ．5	$35 \cdot 9$	－
Pyridine in benzene－diphenylmethanol．						
1.000	$1 \cdot 14210$	－	－	$139.3 \pm 0 \cdot 1$	$16 \cdot 1$	－
$2 \cdot 000$	1－13964	－	－	153．0 ${ }^{\text {土 }} 0.0$	$29 \cdot 8$	－
$3 \cdot 000$	$1 \cdot 13718$	－	一	165．1 ${ }^{\text {¢ }} 0 \cdot 1$	$41 \cdot 9$	一
$4 \cdot 000$	1－13472	－	－	$175 \cdot 5 \pm 0.3$	$52 \cdot 3$	一
$5 \cdot 000$	$1 \cdot 13226$	－	－	184•1 ${ }^{\text {（ }} 0 \cdot 3$	60.9	－
6.000	1－12980	－	－	190．5 ${ }^{\text {土 }} \mathbf{0 . 5}$	$67 \cdot 3$	－

The results of plotting $1 /\left\{\left(P_{A}\right)_{B S}-\left(P_{d}\right)_{s}\right\}$ against $M_{B} v_{B S} / w_{B}$ are shown in the Figure． For each of the A in $B S$ systems the points are satisfactorily linear，although there are slight indications of deviations at low values of $M_{B} v_{B S} / w_{B}$ ，corresponding to high pyridine concentrations，where the assumptions regarding the ideality of behaviour are less justified． The best straight lines as deduced by the least－squares method have the slopes and inter－ cepts shown in Table 2．The values of K and of the dipole moments $\mu_{A B}$ of the complexes deduced from these results are also included in the Table．

Table 2. Association constants in benzene solution, and dipole moments of complexes of pyridine with alcohols.

Alcohol	$\underset{\left(\times 10^{8}\right)}{1 / K \Delta P}$	$\begin{aligned} & 1 / \Delta P \\ & \left(\times 10^{4}\right) \end{aligned}$	$\left.\stackrel{K}{K} \times 10^{-2}\right)$	$\begin{gathered} \Delta P \\ (\text { c.c. }) \end{gathered}$	$\underset{(\text { c.c. })}{\left(P_{\Delta B_{\infty}}\right)_{s}}$	$\underset{\text { (c.c.) }}{\left[R_{A B}\right]_{s}}$	${ }_{(\mathrm{D}}^{\mu_{A B}}$
n-Butyl alcohol	683	135	20	74	278	46	$3 \cdot 37$
tert.-Butyl alcohol	1745	210	12	48	252	47	$3 \cdot 16$
Diphenylmethanol	239	77	32	130	364	82	$3 \cdot 71$

The results for the pyridine-diphenylmethanol B-in- $A S$ system lie on the same line as those for the corresponding A-in- $B S$ system so long as the concentration of alcohol is low, under which conditions the alcohol is essentially monomeric. ${ }^{4}$ This seems to confirm the essential validity of the method for studying such association by molecular polarisation measurements. At the highest diphenylmethanol concentrations used, however, association of the alcohol becomes appreciable, and divergences from collinearity with the A-in- $B S$

Plots of $1 /\left\{\left(P_{A_{\infty}}\right)_{B S}-\left(P_{A_{\infty}}\right)_{s}\right\}$ against $M_{B} / w_{B}{ }^{\prime} d_{B S}$ and of $1 /\left\{\left(P_{B_{\infty}}\right)_{A S}-\left(P_{B_{\infty}}\right)_{s}\right\}$ against $M_{A} / w_{A} d_{A S}$.

- Pyridine in benzene-n-butyl alcohol. - Pyridine in benzene-tert.-butyl alcohol. - Pyridine in benzene-diphenylmethanol.
data occur. It is not surprising that the results for the B-in- $A S$ systems involving n - and tert.-butyl alcohol show much greater divergences from those for the corresponding A-in- $B S$ system, as their association is considerable even in 1% solutions in benzene. The data fall on lines which are almost parallel to those for the A-in- $B S$ systems, with slopes 708 and 1700×10^{-7}, respectively. For each B-in- $A S$ system the $\left(P_{B_{\infty}}\right)_{A S}-\left(P_{B_{\infty}}\right)_{s}$ values are greater than would be expected from the data for the A-in- $B S$ system by an amount which increases progressively with increasing concentration of alcohol in the solvent mixture. As the association of alcohols in benzene solution seems to lead to the production of polymeric rather than dimeric molecules, ${ }^{4}$ pyridine would be expected to associate more readily with dimeric and polymeric alcohol molecules than with monomeric molecules. This would account qualitatively for the results observed, although the matter is further complicated by the fact that association with dimeric and polymeric molecules will lead to aggregates of different average moment from those formed with monomeric alcohol molecules.

The values of the product $K \Delta P$, being obtained from the slopes of the plots for the
A-in- $B S$ systems, should be fairly accurate. The separate K and ΔP values, however, are subject to much greater error, and the values of $\mu_{A B}$ calculated from the latter have a probable error of about $\pm 0.05 \mathrm{D}$. The values of K obtained indicate that n-butyl alcohol tends to associate with pyridine to a slightly greater extent than does tert.-butyl alcohol. This behaviour is parallel to the association of the alcohol molecules with one another in benzene solution. On the other hand, although only slightly associated itself at low concentrations in benzene solution, diphenylmethanol associates with pyridine more readily than do either of the butyl alcohols. Further, the ΔP value, which gives the difference between the molecular polarisation of the complex and the sum of the molecular polarisations of the two separate compounds, is also greatest for diphenylmethanol and least for tert.-butyl alcohol.

In the association complex the axis of the pyridine dipole is collinear with the $\mathrm{H}-\mathrm{O}$ bond of the alcohol molecule and hence, if no electron displacements occur within the molecules as a result of the association, the dipole moment of the complex should be given by $\mu_{A B}{ }^{2}=\mu_{A}{ }^{2}+\mu_{B}{ }^{2}+2 \mu_{A} \mu_{B} \cos \theta$, where θ is the angle of inclination of the dipole axis of the alcohol molecule to the $\mathrm{O}-\mathrm{H}$ bond. The values obtained for μ_{A}, μ_{B}, and $\mu_{A B}$ lead to angles θ of $60^{\circ}, 72^{\circ}$, and 29° in the n-butyl alcohol, tert.-butyl alcohol, and diphenylmethanol molecule, respectively.

Although the oxygen bond angle in the alcohols ($110^{10}{ }^{\circ}$ in methyl alcohol) is greater than that in water ($104 \frac{1}{2}^{\circ}$), in which the effective bond moment is 1.5 D , the forms of the lone-pair orbitals are such that the contributions of the lone-pair electrons to the dipole moments are almost equal in water and in the alcohols. On the other hand the change in state of hybridisation of the bonding orbitals should lead to a slightly smaller $\mathrm{H}-\mathrm{O}$ bond moment in an alcohol compared with that in water. The value of θ found for n-butyl alcohol can be accounted for by effective components to the moment of 1.55 and 1.38 D along the $\mathrm{C}-\mathrm{O}$ and $\mathrm{H}-\mathrm{O}$ bonds respectively. The above considerations together with an inductive effect in the alkyl group render these values not unreasonable.

Although the dipole moment of tert.-butyl alcohol is about the same as that for n-butyl alcohol, it is probable that the electron-density distribution is very different in the two molecules. This is shown, for instance, by the difference between the modes of interaction of the two compounds with hydrogen chloride. As compared with n-butyl alcohol there is likely to be an effective increase of the component of the moment along the $\mathrm{C}-\mathrm{O}$ bond and a corresponding decrease in the component of the moment along the $\mathrm{H}-\mathrm{O}$ bond.

These effects will cause the axis of the dipole in the tert.-butyl alcohol molecule to have a greater angle of inclination to the $\mathrm{H}-\mathrm{O}$ bond than has the axis of the moment of n-butyl alcohol. Although the results are not sufficiently accurate to be used as a real measure of θ they suggest that in the formation of the complexes of these alcohols with pyridine there is no appreciable modification of the electron-density ditribution originally present in the separate molecules.

It seems highly improbable, however, that the dipole in the diphenylmethanol molecule is inclined to the $\mathrm{H}-\mathrm{O}$ bond at an angle as small as 29°, as this would correspond with components of 1.70 and 0.83 D along the $\mathrm{H}-\mathrm{O}$ and the $\mathrm{C}-\mathrm{O}$ bond, respectively, in the isolated molecule. A much more plausible explanation for the relatively high value found for the moment of the complex with pyridine is that in this system the association between the molecules causes a modification of the electron distribution in the component molecules. It has been shown ${ }^{9}$ that the apparent molecular polarisations of primary and secondary aromatic amines in dioxan solution are greater than in benzene, whilst for aliphatic amines the values obtained in the two solvents are almost equal. As dioxan itself has zero dipole moment, hydrogen bonding between an oxygen atom of a dioxan molecule and an aminohydrogen atom would not, per se, lead to an increase in the dielectric polarisation of the system. Hence polarisation measurements do not prove the non-existence of association between dioxan and aliphatic amines, but simply indicate that, if this association occurs, it is not accompanied by any appreciable change in the electron-density distribution in the two molecules. For aromatic amines the difference between the apparent dipole

[^2]moments in dioxan and in benzene solution must be a consequence of the hydrogen bonding, and can be correlated with the readiness with which mesomeric displacements can occur in the amine molecule. Similar displacements may account for the results now obtained with diphenylmethanol. Since this compound reacts with hydrochloric acid by the same mechanism as tert.-butyl alcohol, it is probable that in the isolated molecule there is a tendency for electron density to be donated from the benzene rings towards the adjoining carbon atom. This leads to an increased component to the moment directed roughly along the $\mathrm{C}-\mathrm{O}$ bond, as in tert.-butyl alcohol. On association with a pyridine molecule, however, this effect will be easily reversed, leading to a resultant moment for the complex in excess of the value which would be expected from vector addition of the values for the separate molecules.

Since this work was completed, Sutton and his co-workers ${ }^{10}$ have used partitioning between the liquid and vapour phases to investigate complex formation between a volatile reactant and an involatile one in a volatile solvent. For cyclohexane solutions of trimethylamine and n-heptyl alcohol the association constant for hydrogen-bond formation was found to be 35×10^{2} (mole/c.c. units) which is comparable with our values for the butyl alcohols and pyridine, whilst for trimethylamine and triphenylmethanol it was found to have a higher value (120×10^{2}), as is to be expected from our result for diphenylmethanol. The finding that when K values determined in this way are combined with polarisation data for systems involving phenols and trimethylamine there is an increase in moment $(\Delta \mu)$ as compared with the vector sum of the moments of the reactants parallels our observation with diphenylmethanol and pyridine. Further, the fact that $(\Delta \mu)^{2}$ is a fairly linear function of K appears to be somewhat analogous to the rough proportionality shown between the values of K and ΔP in Table 2.

Experimental

Materials.-Benzene, n - and tert.-butyl alcohol, and diphenylmethanol were purified as described previously. ${ }^{4}$ Laboratory-reagent pyridine was dried (NaOH) and distilled through a 20-plate column; the middle fraction was refluxed from three successive portions of potassium permanganate and then from freshly ignited barium oxide; it was finally distilled from barium oxide in dry nitrogen and had b. p. $115 \cdot 5^{\circ} / 762 \mathrm{~mm}$., $d_{4}^{25} 0.97786, n_{\mathrm{D}}^{25} 1.5071$.

Apparatus and Methods.-The dielectric constants were measured with the resonance apparatus described by Few, Smith, and Witten ${ }^{11}$ relative to a value of 2.2725 for the dielectric constant of benzene at 25°. The use of the more recent value ${ }^{12}$ of $\mathbf{2 . 2 7 4 1}$ makes no perceptible difference to the conclusions. The refractive indices were measured with a Hilger Abbe refractometer. In the systems involving tert.-butyl alcohol and diphenylmethanol the measurements were concentrated on series of solutions of the alcohol in various pyridine-benzene mixtures, but, to facilitate interpolation of the results, most of the measurements on the system containing n-butyl alcohol were made on series of solutions of pyridine in mixtures of benzene with the alcohol. All measurements were made at $\mathbf{2 5 \cdot 0 ^ { \circ }}$. The results are recorded in Table 3.

Table 3. Polarisation data.

Pyridine in benzene.

$100 w_{2}$	ε	v	$\boldsymbol{n}_{\text {D }}$	p	P_{2}	R_{2}
0.0000	2.2725	1-14458	$1 \cdot 4979$	$0 \cdot 34089$		
$0 \cdot 7945$	$2 \cdot 3258$	$1 \cdot 14353$	$1 \cdot 4981$	$0 \cdot 35048$	122.5	$24 \cdot 6$
$2 \cdot 2190$	$2 \cdot 4228$	$1 \cdot 14166$	$1 \cdot 4983$	$0 \cdot 36727$	121.0	$24 \cdot 3$
3-8926	$2 \cdot 5386$	1-13946	$1 \cdot 4984$	$0 \cdot 38628$	119.2	$24 \cdot 0$
4-4362	2.5771	1-13868	$1 \cdot 4985$	$0 \cdot 39234$	118.7	$24 \cdot 1$
5•0702	$2 \cdot 6218$	1-13784	$1 \cdot 4986$	$0 \cdot 39927$	118.0	24-1
6.4325	2.7197	$1 \cdot 13601$	$1 \cdot 4987$	$0 \cdot 41393$	116.8	$24 \cdot 0$
$\varepsilon=2 \cdot 2725+6 \cdot 675 w_{2}+4 \cdot 26 w_{2}{ }^{2}$$v=1.4458-0.133 w_{2} .$						
$\begin{gathered} P_{2} \text { by } \\ \text { king } \end{gathered}$	t extra [R_{D}],	$\begin{aligned} & \text { on }=123 \\ & 20_{2} \mathrm{D} . \end{aligned}$	from	meters $=$	c.c.	$4 \cdot 05$

[^3]Table 3. (Continued.)
n -Butyl alcohol in pyridine-benzene.

$100 w_{B}$	$100 w_{4}$	ε	v	$\boldsymbol{n}_{\text {D }}$	p	$P_{\text {A }}$	$R_{\text {A }}$
$4 \cdot 410$	$0 \cdot 0000$	$2 \cdot 5758$	$1 \cdot 13872$	D	0.39215	${ }^{1}$	-
	$2 \cdot 1650$	$2 \cdot 7343$	1-14095	-	$0 \cdot 41796$	117.4	-
	$4 \cdot 0562$	2.8756	1-14299	-	$0 \cdot 43970$	$115 \cdot 9$	
	$6 \cdot 1995$	$3 \cdot 0227$	1-14528	-	$0 \cdot 46122$	$111 \cdot 4$	-
	7.9983	3-1589	1-14707	-	$0 \cdot 48003$	110.5	-
$2 \cdot 833$	0.0000	2-4650	$1 \cdot 14083$	1.4981	0.37432	-	
	0.9843	$2 \cdot 5270$	1-14204	$1 \cdot 4970$	$0 \cdot 38522$	$109 \cdot 9$	$22 \cdot 7$
	$2 \cdot 8924$	$2 \cdot 6530$	$1 \cdot 14429$	1.4946	$0 \cdot 40651$	$110 \cdot 2$	$22 \cdot 2$
	$2 \cdot 9991$	$2 \cdot 6598$	$1 \cdot 14436$	1.4943	$0 \cdot 40762$	$110 \cdot 1$	21.9
	$3 \cdot 0916$	$2 \cdot 6662$	1-14449	$1 \cdot 4941_{5}$	$0 \cdot 40867$	$110 \cdot 1$	21.9
	$4 \cdot 5501$	$2 \cdot 7627$	$1 \cdot 14607$	$1.4926{ }^{5}$	$0 \cdot 42417$	$109 \cdot 0$	$22 \cdot 2$
	4.8752	$2 \cdot 7840$	1-14647	1-4922	$0 \cdot 42753$	108.7	22.2
Pyridine in n -butyl alcohol-benzene.							
$100 w_{s}$	$100 w_{B}$	ε	v	$n_{\text {D }}$	p	P_{B}	R_{B}
0.9233	$0 \cdot 0000$	$2 \cdot 3085$	$1 \cdot 14577$	1.4967	$0 \cdot 34797$	-	
	$0 \cdot 6650$	$2 \cdot 3600$	$1 \cdot 14483$	$1 \cdot 4968{ }_{5}$	0.35711	136.2	$24 \cdot 4$
	1-3439	$2 \cdot 4118$	$1 \cdot 14384$	$1 \cdot 4969{ }_{5}$	$0 \cdot 36604$	$133 \cdot 9$	$24 \cdot 0$
	$2 \cdot 1411$	$2 \cdot 4718$	$1 \cdot 14280$	$1.4970{ }_{5}$	$0 \cdot 37613$	131.6	$24 \cdot 0$
	2.9471	$2 \cdot 5323$	$1 \cdot 14168$	$1.4972{ }^{\text {a }}$	$0 \cdot 38598$	129.5	$24 \cdot 0$
	$4 \cdot 7860$	$2 \cdot 6694$	$1 \cdot 13921$	$1 \cdot 4974{ }_{5}$	$0 \cdot 40729$	$125 \cdot 6$	$24 \cdot 1$
	6.4394	$2 \cdot 7933$	$1 \cdot 13698$	1.4977^{5}	$0 \cdot 42538$	$122 \cdot 6$	24-1
1.250	0.0000	$2 \cdot 3222$	$1 \cdot 14616$	$1 \cdot 4962$	0.35062	-	
	0.9771	$2 \cdot 4009$	$1 \cdot 14487$	$1 \cdot 4963$	$0 \cdot 36444$	$139 \cdot 6$	23.9
	1.8384	$2 \cdot 4688$	$1 \cdot 14362$	1.4964	$0 \cdot 37589$	$136 \cdot 4$	$23 \cdot 8$
	$2 \cdot 9127$	$2 \cdot 5512$	$1 \cdot 14218$	$1-4966$	$0 \cdot 38929$	$132 \cdot 7$	24.0
	$3 \cdot 7391$	$2 \cdot 6142$	$1 \cdot 14103$	$1 \cdot 4968$	$0 \cdot 39917$	$130 \cdot 4$	$24 \cdot 0$
	$5 \cdot 0759$	$2 \cdot 7156$	$1 \cdot 13918$	$1 \cdot 4970$	$0 \cdot 41445$	$127 \cdot 2$	$24 \cdot 0$
	$5 \cdot 7741$	$2 \cdot 7686$	$1 \cdot 13825$	$1 \cdot 4971$	$0 \cdot 42215$	$125 \cdot 7$	24.0
1.866	0.0000	$2 \cdot 3479$	1-14698	$1 \cdot 4955$	$0 \cdot 35558$		
	0.6028	$2 \cdot 4016$	$1 \cdot 14608$	1.4956	$0 \cdot 36495$	$151 \cdot 1$	$23 \cdot 7$
	$1 \cdot 2421$	$2 \cdot 4557$	1-14518	1.4957	$0 \cdot 37414$	$146 \cdot 4$	$23 \cdot 9$
	$2 \cdot 2688$	$2 \cdot 5409$	$1 \cdot 14366$	$1 \cdot 49595$	$0 \cdot 38809$	141.5	$24 \cdot 0$
	2.9854	2.5981	$1 \cdot 14268$	$1 \cdot 4961{ }^{\circ}$	$0 \cdot 39715$	138.3	$24 \cdot 1$
	$5 \cdot 0322$	$2 \cdot 7601$	1-13988	$1 \cdot 4964$	$0 \cdot 42148$	131.7	$24 \cdot 0$
	6.2873	$2 \cdot 8582$	$1 \cdot 13813$	1.4966_{5}	0.43532	128.5	24-1
2.538	0.0000	$2 \cdot 3766$	1-14777	$1 \cdot 4946$	0.36102	-	-
	0.5823	$2 \cdot 4325$	$1 \cdot 14693$	1.4947	0.37067	159.6	$24 \cdot 0$
	1.3289	2.5009	$1 \cdot 14583$	1.4949	0.38210	$154 \cdot 0$	$24 \cdot 1$
	$2 \cdot 1123$	2.5698	$1 \cdot 14473$	1.4950	0.39324	149.2	24.0
	2.8671	$2 \cdot 6341$	1.41366	1.4952	$0 \cdot 40329$	$145 \cdot 2$	$\mathbf{2 4 . 0}$
	4.5834	2.7757	$1 \cdot 14124$	$1 \cdot 4955$	$0 \cdot 42434$	137.8	24.1
	6.7647	2.9508	$1 \cdot 13822$	$1.4958{ }_{5}$	0.44850	130.8	24.1
3.564	$0 \cdot 0000$	$2 \cdot 4211$	1-14895	1.49345	$0 \cdot 36932$	-	23.7
	$0 \cdot 6522$	$2 \cdot 4907$	1-14794	1.4936	0.38106	$171 \cdot 6$	23.7
	1-2361	$2 \cdot 5500$	$1 \cdot 14709$	$1-4937$	$0 \cdot 39077$	166.5	$23 \cdot 8$
	2.3167	$2 \cdot 6530$	$1 \cdot 14554$	$1 \cdot 4939$	$0 \cdot 40695$	157.7	$23 \cdot 9$
	$2 \cdot 8161$	$2 \cdot 6992$	$1 \cdot 14483$	$1 \cdot 4941$	0.41396	$154 \cdot 6$	24-1
	$4 \cdot 5346$	$2 \cdot 8500$	$1 \cdot 14236$	1.49445	$0 \cdot 43574$	$145 \cdot 1$	$24 \cdot 0$
	6.9125	3.0490	1-13901	$1 \cdot 4948{ }_{5}$	$0 \cdot 46223$	135.5	24-1
4.350	0.0000	$2 \cdot 4545$	$1 \cdot 14983$	1.4924	$0 \cdot 37544$	-	
	0.5816	$2 \cdot 5217$	$1 \cdot 14892$	$1 \cdot 4925$	$0 \cdot 38665$	182-1	$23 \cdot 6$
	1.3242	$2 \cdot 6028$	$1 \cdot 14780$	$1 \cdot 49275$	$0 \cdot 39969$	$174 \cdot 5$	$24 \cdot 0$
	2.0719	$2 \cdot 6790$	$1 \cdot 14676$	$1 \cdot 4929$	$0 \cdot 41150$	$167 \cdot 4$	$24 \cdot 1$
	3.2037	2.7886	$1 \cdot 14508$	$1 \cdot 4931$	$0 \cdot 42770$	158.7	$24 \cdot 0$
	$4 \cdot 6780$	2.9225	1-14292	$1.4934{ }_{5}$	$0 \cdot 44637$	149.6	$24 \cdot 0$
	6.7755	3-1042	$1 \cdot 13997$	$1.4938{ }_{5}^{5}$	$0 \cdot 46995$	$140 \cdot 0$	$24 \cdot 0$
tert.-Butyl alcohol in pyridine-benzene.							
$100 w_{B}$	$100 w_{4}$	ε	v	$n_{\text {D }}$	p	$P_{\text {A }}$	$R_{\text {A }}$
1.244	$0 \cdot 0000$	$2 \cdot 3565$	1-14286	1.4980	$0 \cdot 35585$		
	0.5432	$2 \cdot 3793$	$1 \cdot 14397$	1.4972	$0 \cdot 36031$	$87 \cdot 1$	22.9
	0.9696	$2 \cdot 3975$	$1 \cdot 14481$	$1.4965{ }_{5}$	$0 \cdot 36381$	$87 \cdot 2$	$22 \cdot 8$
	1.8620	$2 \cdot 4360$	$1 \cdot 14655$	1.4953	$0 \cdot 37116$	$87 \cdot 3$	$23 \cdot 0$
	2.9705	$2 \cdot 4827$	$1 \cdot 14858$	$1 \cdot 4936$	$0 \cdot 37990$	$86 \cdot 4$	22.7
	$4 \cdot 1819$	2.5315	$1 \cdot 15076$	$1 \cdot 4919$	0.38892	$85 \cdot 0$	$22 \cdot 8$
	$\mathbf{5} \cdot \mathbf{4 5 3 0}$	2.5801	$1 \cdot 15299$	$1 \cdot 4900$	$0 \cdot 39777$	83-4	$22 \cdot 6$

Table 3. (Continued.)

$100 w_{B}$	$100 w_{A}$	$\boldsymbol{\varepsilon}$	v	$n_{\text {D }}$	p	P_{A}	$\boldsymbol{R}_{\text {A }}$
$2 \cdot 440$	$0 \cdot 0000$	$2 \cdot 4382$	$1 \cdot 14133$	$1 \cdot 4983$	$0 \cdot 36985$		
	$0 \cdot 4540$	$2 \cdot 4594$	$1 \cdot 14219$	$1 \cdot 4976$	$0 \cdot 37379$	91.8	$22 \cdot 4$
	1.0004	$2 \cdot 4854$	$1 \cdot 14326$	$1.4967{ }_{5}$	$0 \cdot 37860$	$92 \cdot 3$	22.5
	$1 \cdot 7855$	$2 \cdot 5232$	$1 \cdot 14477$	1.4956	$0 \cdot 38550$	92.4	$22 \cdot 6$
	$2 \cdot 3921$	2.5518	$1 \cdot 14595$	$1 \cdot 4947$	$0 \cdot 39068$	$92 \cdot 0$	$22 \cdot 6$
	3.9556	$2 \cdot 6235$	$1 \cdot 14876$	1.49255_{5}	$0 \cdot 40338$	$90 \cdot 2$	22.7
	5•1362	$2 \cdot 6749$	$1 \cdot 15082$	1.49095	$0 \cdot 41232$	88.7	$22 \cdot 8$
$3 \cdot 738$	0.0000	2.5282	1-13957	$1 \cdot 4984$	$0 \cdot 38459$	-	
	0.5667	$2 \cdot 5571$	$1 \cdot 14066$	$1.4975{ }_{5}$	0.38975	$96 \cdot 0$	22.7
	$1 \cdot 0785$	2.5838	1-14168	$1 \cdot 4968$	$0 \cdot 39447$	$96 \cdot 4$	22.7
	1.5541	$2 \cdot 6089$	1-14262	$1 \cdot 4961$	$0 \cdot 39888$	$96 \cdot 6$	$22 \cdot 8$
	$2 \cdot 6278$	$2 \cdot 6648$	$1 \cdot 14460$	$1 \cdot 4946$	$0 \cdot 40850$	$95 \cdot 9$	$22 \cdot 8$
	3•8606	$2 \cdot 7266$	$1 \cdot 14688$	$1 \cdot 4928$	$0 \cdot 41894$	$94 \cdot 5$	$22 \cdot 8$
	5.5571	$2 \cdot 8090$	$1 \cdot 14981$	1.49045	0.43252	92-4	$22 \cdot 7$
6.541	$0 \cdot 0000$	2.7284	1.13587	$1 \cdot 4987$	0.41521	- 7	
	0.5172	2.7581	1-13691	$1 \cdot 4980$	$0 \cdot 42009$	$100 \cdot 7$	$23 \cdot 4$
	0.9789	$2 \cdot 7846$	1-13775	$1 \cdot 4973$	$0 \cdot 42437$	$100 \cdot 2$	$22 \cdot 8$
	$1 \cdot 6789$	$2 \cdot 8263$	1-13916	$1.4962{ }_{5}$	$0 \cdot 43107$	$100 \cdot 8$	$22 \cdot 8$
	$2 \cdot 6182$	$2 \cdot 8821$	$1 \cdot 14087$	$1.4947{ }_{5}$	0.43982	100.5	22.5
	$3 \cdot 7618$	2.9489	$1 \cdot 14293$	1.4932	0.45009	99.5	22.5
	5.3449	3.0387	$1 \cdot 14574$	$1 \cdot 4910$	0.46358	$97 \cdot 9$	$22 \cdot 6$
6.871	0.0000	2.7510	$1 \cdot 13547$	$1 \cdot 4986$	0.41848	-	-
	0.5059	2.7808	1-13646	$1 \cdot 4980$	0.42332	102.0	$23 \cdot 9$
	1.0360	$2 \cdot 8126$	1-13747	$1 \cdot 4972$	$0 \cdot 42842$	$102 \cdot 1$	$23 \cdot 2$
	1.7573	$2 \cdot 8575$	1-13882	$1 \cdot 4961$	$0 \cdot 43549$	$102 \cdot 8$	$22 \cdot 8$
	$2 \cdot 6889$	2.9120	$1 \cdot 14056$	$1 \cdot 4947$	$0 \cdot 44396$	$101 \cdot 3$	22.7
	$3 \cdot 5443$	$2 \cdot 9624$	$1 \cdot 14209$	$1 \cdot 4934$	$0 \cdot 45164$	$100 \cdot 4$	22.5
	$5 \cdot 6388$	3.0832	$1 \cdot 14581$	$1 \cdot 4904$	0.46958	98.2	22.5
$\mathbf{9} \cdot 166$	0.0000	2.9202	1-13242	$1.4991{ }_{5}$	0.44195	-	
	0.5689	$2 \cdot 9557$	1-13354	1.4983	0.44734	103.0	22.6
	1.3042	$3 \cdot 0023$	$1 \cdot 13497$	$1 \cdot 4972$	$0 \cdot 45431$	103.0	$22 \cdot 6$
	$1 \cdot 6229$	3.0231	$1 \cdot 13557$	$1 \cdot 4967$	$0 \cdot 45736$	103.2	22.5
	$2 \cdot 6476$	$3 \cdot 0892$	1-13748	-	$0 \cdot 46696$	$102 \cdot 8$	-
	$3 \cdot 8051$	3•1616	1-13957	1.4936	$0 \cdot 47723$	101.5	$22 \cdot 6$
	4.9980	3.2391	$1 \cdot 14165$	$1 \cdot 4918$	$0 \cdot 48792$	100.9	22.5

1.477	$0 \cdot 0000$	$2 \cdot 3724$	$1 \cdot 14260$	$1.4980{ }_{5}$	$0 \cdot 35864$	-	
	0.5942	$2 \cdot 3910$	$1 \cdot 14110$	$1.4986{ }^{5}$	$0 \cdot 36148$	154.1	$57 \cdot 7$
	1.4323	$2 \cdot 4170$	1-13901	$1 \cdot 4993$ 3	$0 \cdot 36541$	153.1	$57 \cdot 7$
	$2 \cdot 4494$	$2 \cdot 4475$	1-13651	$1.5002{ }_{5}$	$0 \cdot 36989$	$150 \cdot 7$	$57 \cdot 7$
	3.5960	$2 \cdot 4808$	1-13369	1.5012	0.37466	148.2	$57 \cdot 5$
	$4 \cdot 4428$	$2 \cdot 5049$	1-13163	1.5020	$0 \cdot 37803$	$146 \cdot 5$	$57 \cdot 7$
	$5 \cdot 6949$	2.5400	$1 \cdot 12853$	$1 \cdot 5030$	$0 \cdot 38281$	$144 \cdot 3$	$57 \cdot 3$
1.907	$0 \cdot 0000$	$2 \cdot 4018$	$1 \cdot 14205$	$1 \cdot 4983$	$0 \cdot 36370$	-	
	0.5143	$2 \cdot 4193$	$1 \cdot 14077$	$1 \cdot 4987$	$0 \cdot 36637$	162.8	$56 \cdot 4$
	1.5728	$2 \cdot 4548$	$1 \cdot 13816$	$1 \cdot 4996{ }_{5}$	$0 \cdot 37169$	$160 \cdot 6$	$57 \cdot 3$
	2-2371	$2 \cdot 4762$	$1 \cdot 13645$	$1.5003{ }^{\text {a }}$	$0 \cdot 37479$	$158 \cdot 4$	$57 \cdot 5$
	3.0757	$2 \cdot 5029$	$1 \cdot 13439$	$1 \cdot 5010$	$0 \cdot 37861$	$156 \cdot 4$	$57 \cdot 5$
	$4 \cdot 5423$	2.5483	$1 \cdot 13076$	$1 \cdot 5021$	$0 \cdot 38492$	153.1	56.9
	$5 \cdot 9192$	2.5892	1-12735	$1 \cdot 5033{ }_{5}$	$0 \cdot 39039$	$150 \cdot 1$	57-1
2.763	$0 \cdot 0000$	$2 \cdot 4600$	$1 \cdot 14089$	$1 \cdot 4983$	0.37347	-	
	$0 \cdot 2931$	$2 \cdot 4712$	$1 \cdot 14012$	$1 \cdot 4985{ }_{5}$	0.37515	174•1	56.7
	$0 \cdot 5458$	2.4809	1-13949	$1.4987{ }_{5}$	$0 \cdot 37659$	174-1	56.7
	$2 \cdot 0408$	2.5366	$1 \cdot 13581$	$1.5000{ }_{5}$	$0 \cdot 38471$	$170 \cdot 3$	57.3
	$3 \cdot 6932$	2.5952	1-13172	1.5015	$0 \cdot 39287$	$165 \cdot 6$	$57 \cdot 3$
	4.5092	2.6235	1-12969	$1.5022{ }_{5}$	0.39668	$163 \cdot 6$	$57 \cdot 5$
$\mathbf{4 . 2 6 6}$	0.0000	$2 \cdot 5649$	1-13884	$1 \cdot 4985$	0.39041	-	-
	$0 \cdot 2728$	$2 \cdot 5769$	$1 \cdot 13815$	$1.4987{ }_{5}$	0.39213	188.2	58.2
	0.6439	2.5929	1-13723	$1.4991{ }^{5}$	0.39441	186.6	57.8
	0.8541	$2 \cdot 6018$	1-13672	1.4993	0.39567	185.5	57.8
	1.8917	$2 \cdot 6457$	$1 \cdot 13418$	1.5001	$0 \cdot 40177$	182.6	$57 \cdot 1$
	$3 \cdot 1605$	$2 \cdot 6978$	$1 \cdot 13103$	$1 \cdot 5013$	$0 \cdot 40875$	178.9	$57 \cdot 3$
	$4 \cdot 6501$	2.7568	$1 \cdot 12745$	1.5026	0.41639	174.9	$57 \cdot 5$

In none of the mixtures studied was ε a linear function of w_{d} (or w_{B}) and hence, to minimise errors in the relative values of $\left(P_{A_{\omega}}\right)_{B S}$ or $\left(P_{B_{\infty}}\right)_{\Delta S}$ derived, the methods used in the extrapolation to zero concentration included, not only the determination of the limiting value of $\left(\Delta \varepsilon / w_{A}\right)_{B S}$ and $\left(\Delta v / w_{A}\right)_{B S}$, but also the limiting values of $\left(\Delta \varepsilon / w_{A}\right)_{B S}-\left(\Delta \varepsilon / w_{A}\right)_{B},\left(P_{A}\right)_{B S}-\left(P_{A}\right)_{S}$, $\left(P_{A}\right)_{B S^{\prime}}-\left(P_{A}\right)_{B S}$ for successive solvent mixtures and $\left(P_{A}\right)_{B S^{\prime}} /\left(P_{A}\right)_{B S}$ for successive solvent mixtures. A series of extrapolated values of $\left(P_{A_{\infty}}\right)_{B S}$ were thereby obtained, the spread indicating the probable error in the final average value taken. For the derived data only the functions involving the molecular polarisation values were used.

Battersea Polytechnic, London, S.W.ll.
Bedford College, London, N.W.l.
[Received, May 1st, 1956.]

[^0]: ${ }^{1}$ Cleverdon, Ph.D. Thesis, London, 1947.
 ${ }^{2}$ Cleverdon and Smith, Chem. and Ind., 1948, 29.

[^1]: ${ }^{3}$ Few and Smith, J., 1949, 2781.
 4 Boud, Cleverdon, Collins, and Smith, J., 1955, 3893.
 ${ }^{5}$ Goethals, Rec. Trav. chim., 1935, 54, 299.
 ${ }^{6}$ Hückel, Ber., 1944, 77, 810.
 7 Leis and Curran, J. Amer. Chem. Soc., 1945, 67, 79.
 ${ }^{8}$ De More, Wilcox, and Goldstein, J. Chem. Phys., 1954, 22, 876.

[^2]: ${ }^{9}$ Few and Smith, J., 1949, 753; Smith, J., 1950, 3532; 1953, 109.

[^3]: 10 Denyer, Gilchrist, Pegg, Smith, Tomlinson, and Sutton, J., 1955, 3889; Hulett, Pegg, and Sutton, $J ., 1955,3901$.

 11 Few, Smith, and Witten, Trans. Faraday Soc., 1952, 48, 211.
 ${ }_{12}$ Hartshorn, Parry, and Essen, Proc. Phys. Soc., 1955, 68, B, 422.

